Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths

نویسندگان

  • X. L. Xu
  • Y. P. Wu
  • C. J. Zhang
  • F. Li
  • Y. Wan
  • J. F. Hua
  • W. Lu
  • W. B. Mori
چکیده

Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multidimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity I, lasers with longer/shorter wavelength λ have larger/smaller ponderomotive potential (∝ Iλ). The two-color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g., a 10 μmCO2 laser) due to its very large ponderomotive potential. On the other hand, a short wavelength laser can produce electrons with very small residual momenta (p⊥ ∼ a0 ∼ ffiffi I p λ) inside the wake, leading to electron beams with very small normalized emittances (tens of nm). Using particle-in-cell simulations we show that a ∼10 fs electron beam with ∼4 pC of charge and a normalized emittance of ∼50 nm can be generated by combining a 10 μm driving laser with a 400 nm injection laser, which is an improvement of more than 1 order of magnitude compared to the typical results obtained when a single wavelength laser is used for both the wake formation and ionization injection. With the transverse colliding geometry, simulations show that similarly low emittance and much lower slice energy spread (∼30 keV, comparing with the typical value of few MeV in the longitudinal injection scheme) can be simultaneously obtained for electron beams with a few pC charge. Such low slice energy spread may have significant advantages in applications relevant to future coherent light sources driven by plasma accelerators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regimea)

Articles you may be interested in Generation of electron beams from a laser wakefield acceleration in pure neon gas High-quality electron beam from laser wake-field acceleration in laser produced plasma plumes Appl. In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30–80 TW, 30 fs laser pulses, opera...

متن کامل

Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout.

Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blo...

متن کامل

Ionization induced trapping in a laser wakefield accelerator.

Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+/-1.0 to 2.9+/-0.8 mr...

متن کامل

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental me...

متن کامل

Photocathode rf gun emittance measurements using variable length laser pulses

The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center (SLAC) was created to develop an appropriate injector for the proposed Linac Coherent Light Source (LCLS) at SLAC. The LCLS design requires the injector to produce a beam with at least 1 nC of charge in a 10 ps or shorter pulse with no greater than 1 -mrad normalized rms emittance. The first photoinjector under study at the G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014